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In this paper a new class of formations that maintain a constant

shape as viewed from the Earth is introduced. An algorithm

is developed to place n spacecraft in a constant shape forma-

tion spaced equally in time using the classical orbital elements.

To first order, the dimensions of the formation are shown to be

simple functions of orbit eccentricity and inclination. The per-

formance of the formation is investigated over a Keplerian orbit

using a performance measure based on a weighted average of the

angular separations between spacecraft in formation. Analytic

approximations are developed that yield optimum configurations

for different values of n. The analytic approximations are shown

to be in excellent agreement with the exact solutions.

INTRODUCTION

Clusters of low-performance spacecraft flying in formation may provide enhanced

performance over single high-performance spacecraft. This is especially true for re-

mote sensing missions where interferometry or stereographic imaging may provide

higher resolution data. There are many possibilities for configuring formations of

satellites for such missions, but there are relatively few established performance mea-

sures for evaluating the effectiveness of particular configurations. This is especially

important as configurations vary during an orbit due to orbital dynamics, and over

longer time scales due to perturbations.

Significant attention has been given in the literature to many aspects of the dis-

tributed spacecraft concept. A preliminary feasibility study of formation flying tech-

nologies was performed by Folta et al. 1 At the time of study it was determined that

limitations in pointing accuracy could not meet an 80% overlap in the presence of

errors. Further investigations were performed bv Folta et al. 2 to understand how to

relate observations from two spacecraft, to determine the effects of perturbations,

and to confirm previous results. The formation flying concept was revisited by Folta

et al. a in 1996 and the feasibility of formation flying for particular missions in light

of new advances in technology and autonomy was investigated. The dynamics of an
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perform very long baseline optical interferometry. DeCou conclmtecl that the thrust-

ing required, is low enough to allow missions of up to ten ,,-ears using ion thrusters

without refueling. Gramling et el. 5 demonstrated the possibility of using Goddard

Space Flight Center's (GSFC) Onboard Navigation System (ONS) for relative nav-

igation of the EO-1/Landsat-7 spacecraft formation, t-[artman et al. s extended the

study of GSFC's ONS performance for spacecraft formation flying. Specifically Hart-

man investigated orbit determination and prediction accuracies and their impact on

the relative separation errors.

The use of GPS for relative navigation of formation flying spacecraft has been

studied by Guinn et al. r and for both relative position and attitude sensing by Adams

et al. s and How et al. 9 Adams et al. 8 presented results from a GPS-based relative

navigation and attitude sensing system developed in the laboratory.

In this paper, we introduce a class of formations we call rotating formations, where

the configuration remains relatively constant during an orbit. A detailed analysis of

the performance of this class of formations, including an approximate analytical de-

termination of the optimal configuration based on an angular performance measure is

presented. The new class of formations involves an elliptical arrangement of satellites

in slightly elliptical orbits, each inclined slightly with respect to the orbital plane
of the reference circular orbit. Each orbit has the same semimajor axis, inclination

with respect to the reference plane, eccentricity, and argument of periapsis. The

position of each satellite is determined by these common elements, and bv unique

values for the right ascension of the ascending node and true anomaly at epoch. A

general expression for these angles is developed in terms of the number of satellites

in the formation, n, based on a equal-time distribution of the satellites. The relative

configuration remains nearly constant during an orbit, as the satellites rotate about

the reference circular orbit. In our development, the eccentricity e and inclination

i are treated as design variables, and values are chosen to optimize an appropriate

performance measure.

One measure of the performance of such a formation is the angular separation

between the satellites, as this defines the performance of interferometry and of stere-

ographic imaging. A particular instrument's effectiveness in these missions can be re-

lated to the angular separation, c_2j, between the ith and jth satellites in the formation.

For a specific value, c_m, the performance of any pair of satellites will be maximized.

Since the angular separation varies during the orbit, the performance measure is ac-

tually an orbit-averaged quantity depending on all the angular separations. For the

rotating config_lration developed here, the integrand of this performance measure is



nearly _[mstant, especially for large n,, since the time it rakes the t\)rmarion to reach

a It_';ulv e(lilivalent conli_llr;tri_m is T/r_, where T is th,' orbital perio_t. Thlls the

iute_r;m,l ,'an b,' use_l as a proxy performance rneas_tre, which allows the analytical

(h,wqoi)im,n_ of t,he measure with all orbital elements in('htrle(l m tile expression.

The full analytical expression of the performance measure is extremely compli-

cated, and its complexity increases geometrically with rz. We develop a relationship

between the eccentricity and inclination that permits us to develop a series approx-

imation for the performance measure. Using only terms to second order, simple

approximations are developed for the values of e and i that maximize the formation

performance. These approximations take the form of a function that depends only

on rt multiplied by the optimal separation angle c_m. Thus the optimal e and / can

easily be computed for the different optimal separation angles associated with dif-

ferent instruments. The approximations exhibit excellent agreement with the exact

solutions obtained using the orbit-averaged "exact" version of the performance mea-

sure. Furthermore, the functional dependence of the optimal e and i on the number

of satellites, n, is recaptured by investigating the solutions for different values of n.

DEVELOPMENT OF THE ROTATING FORMATION

In this section, a formation of n spacecraft is developed such that the satellites

move along an ellipse-like shape in a relative reference frame. A configuration of n

spacecraft on an ellipse-like path is shown in Figure 1. In general, the horizontal

dimension is defined as the longitudinal separation and the vertical separation as the

latitudinal separation. The dimensions can be physically represented using the angu-

lar or spatial separations. To distinguish between the two representations, the angular

dimensions of the ellipse are measured using the angles 6l_ and al_t to specifv the

longitudinal angular separation and the latitudinal separation respectively. When the

dimensions of the ellipse are discussed in units of distance, the horizontal dimension

is termed dlo,_ and the vertical dimension is called dlat.

In the development of the rotating formation two coordinate systems are used: an

inertial frame YR, and a relative reference frame bv_¢l defined by a reference circular

orbit. The reference circular orbit is chosen to be equatorial with a true longitude

at epoch of g_¢/. The origin of )V_el is attached to a reference spacecraft that moves

along the reference orbit. The .r_.l-axis is in the direction of the reference spacecraft's

position vector. The y,¢_-axis lies along the reference spacecraft's velocity vector

direction. By this definition the y_¢l-axis is always tangent to the reference orbit.

The z_¢l-axis is chosen to complete the right-handed set, and is in the orbit normal

direction.

Frame 5rn is an inertial frame but it is not equivalent to the Earth-centered inertial

frame Fr commonly found in the literature. The frame is fixed in inertial space with its

origin at the center of the Earth. However, its axes can be ,lefined by any arbitrary
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Figure 1: Geometry of the Rotating Formation

right-handed system. The result is that the XR-yR plane of .T'R is not the Earth's

equatorial plane, it is the orbital plane of the reference circular orbit. The orbital

elements used to describe the rotating formation are used according to their classical

definition, but for generality they are measured with respect to :TR unless otherwise

stated.

We wish to determine the dimensions of the relative orbit in terms of the orbital

elements of the spacecraft in formation. To simplify the analysis the discussion is

limited to orbits that are nearly circular and result in small displacements from the

reference orbit. In doing so, we require that the spacecraft motion occurs in nearly

the same plane as the reference motion. Therefore, the along-track displacements in

the relative motion are primarily due to the eccentricity of the orbits. With these

assumptions the dependence of 5ton and 51at on the orbital elements can be determined.

A view of the ellipse-like path of the rotating formation in 5rR is shown in Figure 2.

The vector rt describes the position of an arbitrary spacecraft. The true anomaly, u,

for the spacecraft is measured from the il axis. The quantity yt_ is the along-track

component of angular separation of the spacecraft in -Tret; i.e., Ylo,, is defined as an

angle and not a distance. From inspection of Figure 2, we see that the angle 6lat is

due to the difference in inclination between the orbit and the reference orbit. The

expression for _l_t in terms of the inclination is simply

Recall that it is assumed that the out-of-plane motion does not affect the along-

track angular separation. Therefore, an expression for dlo,, can be determined by

investigating the projection of the motion in the xR - gR plane as seen in Figure 3.

First an expression for ylo,_ is developed. From inspection of Figure 3. gto,_ can be

written

yLo_ = t, - 0 (2)

4
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Figure 2: The Rotating Formation Seen in _'n and ,7"r_l

where 0 is the angle between iret and h. An expression for 0 can be written as

O = Mo_, + rlt (3)

where Mo,,, is the angle between i_et and ]1 at the initial epoch. The horizontal

dimension, 5lo_, is simply twice the maximum in the along-track separation:

_o,_ = 2yt_lm_ (4)

For small e we can write

r, = Mo_ + tit + 2e sin (M0, + r/t) (5)

as found in Battin, l° where M0_ is the mean anomaly of rl at the initial epoch, and

r/is the mean motion. Substituting Eqs. (3) and (5) into Eq. (2) we obtain

Yton = 2e sin (M0, + tit) + M0, - -M0_,, (6)

Recall that Mot and M0,,, are constants so

= 2e (7)

Substituting Eq. (7) into Eq. (4) we obtain

dlon = 4e (8)

A similar result was arrived at by Chichka tl using a second-order approximation.

Equations (1) and (8) show the relationship between the dimension of the relative

motion in terms of e and i. However. we need to develop an algorithm to place n

spacecraft in an ellipse-like formation defined bv dLo,_ and dl_,t.
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Figure 3: The Rotating Formation Projected into the xR - yR Plane

SPACECRAFT PLACEMENT IN THE ROTATING FORMATION

In this section an algorithm to place n spacecraft along the ellipse-like path in

the relative reference frame is developed in terms of 5to_ and 5mr. The spacecraft can

be placed in the formation in three different configurations: equal angle separations,

equal arc length separations, and equal time separations. In this paper an algorithm

is developed to place the spacecraft around the ellipse-like path with equal time

separations. For circular formations, equal time separation is equivalent to equal

arc length and equal angle separation. For ellipse-like formations the relationship

between the three configurations is non-trivial. The formation is developed by first

investigating the requirements to place a single spacecraft on an ellipse-like path

defined by 5to_ and 5t,,t. Then, the method is generalized to include n spacecraft

spaced equally in time.

We know from Eqs. (1) and (8) that the dimensions of the relative motion path

in -7"tel depends only on e and i. Therefore, for all the spacecraft to move along an

ellipse of the same dimensions in .T'rel, all the orbits in the formation must have a

common e and i. Solving for i in Eq. (1) yields

= 4 J2 (9)

From Eq. (8) the eccentricity can be written as

e= (io)

To ensure a cohesive formation, all the orbits must also have the same semimajor

axis. Therefore, only the argument of periapsis. :J. the longitu(te of ascending node,

f_, and the true anomaly, u may vary for the orbits in the rotating formation.

6
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Figure 4: Time Evolution of the Rotating Formation

In Figure 4, the position of an arbitrary satellite at two different epochs is shown.

At the initial epoch the position is described by rto; at a later epoch the position is

described by rt,. The origin of the reference orbital frame is chosen to lie along the

xR-axis at the initial epoch in a circular orbit whose plane of motion is the xR - YR

plane. We begin constructing the formation by placing a spacecraft in position 1

shown in Figure 1. The relative motion is chosen to be clockwise. For clockwise

motion to occur the spacecraft at position 1 must be moving in the Yrel direction

• faster than the origin of the reference orbit. Therefore, spacecraft 1 is positioned at

the periapsis of its orbit:

ul = 0 (11)

The angles a;1 and t21 must be chosen to position the periapsis of orbit 1 over JR- By

inspection of Figure 4 we see that this is accomplished by choosing

f_]. = 3rr/2 w_ =;r/2 (12)

In summary, the orbital elements to position a spacecraft at position 1 in .7-r_t at

the initial epoch are

aL= a el = _zon/4 i_ = _,_t/2 _,l = ,_/_9 _ = 3,_/2 ._ = 0 (_3)

We now wish to generalize the algorithm to place n satellites spaced equally in

time along the ellipse-like path seen in Figure 1. For all satellites to move along the

same path in brR, all the orbits must share a common a, e, and i. However a.,, 9.. and

t_ must be determined for the remaining orbits.



The time of separation, t_, between spacecraft in an e(lual time formation is given

bv
t"--*7-.

t,, = Y/n = 2____/a'__ (t4)
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To determine the orbital elements of the ith spacecraft hi formation orbit I is pro-

pogated through time t, where

t, = (i- 1)t, (15)

The configuration of spacecraft 1 and the reference orbit at the initial epoch, t0, and

at t, can be seen in Figure 4. We need to determine _'t,, the value of _, for orbit 1

after the passage of time t_. For small e a first order expansion for _, is

ut, = Me, + 2e sin Mr, (16)

where

Mr, = Mo + (i- 1)rlt, (17)

Recall that the true anomaly for orbit 1 at the initial epoch is zero. Therefore, the

mean anomaly of orbit 1 at the initial epoch, M0, is also zero. Substituting Eq. (14)

and (17) into Eq. (16) the relation for the true anomaly is obtained:

2rr(i- 1)+ 2esin (_-_(i - 1)) (18)//t_ _ 7

For a Keplerian orbit only I,, changes with time. Therefore, the orbital elements

to space n spacecraft equally in time in _'R are known. However, we are interested

in the elements that yield n spacecraft spaced equally in time in br_,. Therefore, we

need to determine the new configuration of _t after the passage of time t_. Then

the orbital elements to space n spacecraft equally in time in 5r_, can be determined

by a coordinate transformation.

The frame .T'_et is defined by a circular, equatorial reference orbit in .TR. Therefore,

the motion of the coordinate system _el after time ti is simply a 3-rotation through

the angle 0 = rlti. Performing a 3-rotation through rlti to -T'ret is equivalent to rotating

f2i through an angle 0 = -rlti. Therefore, to have n spacecraft spaced equally in time

in .T',_l the node is written

3n" 2,'r(i- 1)
-- -Q_ = 3_r/2 -77ti = 2 n

In summary, to obtain the orbital elements to place the i th spacecraft in an equal

time, rotating formation in _r_l orbit 1 is propogated through t, as defined in Eq. (15).

Then the longitude of the ascending node is rotated backwards through r/t_ to 9., as

defined by Eq. (19) to account for the motion of .T'_t. Hence a. e. i. and _' are the

same for all orbits in the formation. The true anomaly and the longitude of ascending
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given I)v
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where 1 < Z < n.

PERFORMANCE OF THE ROTATING FORMATION

We wish to investigate the performance of the rotating formation using an appro-

priate metric. We propose that the performance of the formation can be evaluated

by investigating the angular separations between spacecraft over the course of an or-

bit.t2 Specifically, an orbit-averaged quantity based on the sum of the instantaneous

separation angles is considered:

i rT n-I

j=i+l

where w_ is an instantaneous position metric to be chosen by the analyst, a u is the

angular separation between the i th and jth spacecraft, and r/s is the number of unique

separation angles given by
17,2 _ /2

- (22)
2

A measure of this form allows the analyst to define an instantaneous metric for the

angular separation between a pair of spacecraft. The performance of all pairs in for-

mation is evaluated accordingly and summed together to obtain a measure of the

formation performance at a particular instance in time. By integrating the instanta-

neous metric over an orbit a measure of orbit effectiveness is obtained. A parabolic

form is chosen for the instantaneous weight function, w_. In doing so, the flexibility

is enabled to choose an upper and lower limit for the acceptable angular separations

between two spacecraft as well as the optimum configuration for two spacecraft.

To solve the performance problem, the position information for all spacecraft in

formation over an orbit period is needed. In general, spacecraft are subject to forces

from the spherical primary as well as perturbations from atmospheric drag, solar radi-

ation pressure, third body forces, and non-spherical effects. However, approximating

the orbital dynamics with Keplerian motion is suitable for a preliminary analysis.

Therefore, to obtain the conditions that yield an optimum configuration Eq. (21)

must be solved for an optimum where the dynamics of the formation are described

by the two body equation of motion with the initial conditions given by the orbital

elements in Eq. (20).

We now investigate optimum configurations of the formation according to the

angular separation performance metric.

9



An Analytic Solution

We wish to deternfine optimal conl-igllrations of the rotating fl)rmarion in terms

of the orbital elements defining the rotating formation. Hence, we seek the orbital

elements that yield an optimum in Eq. (21). In general. _V_ does not permit a closed-

form analytic solution. However, some simplifying assumptions are made that allow

the application of the metric to the rotating formation to obtain analytic results. In

summary, a closed-form solution for the maximum in Eq. (21) is desired where

= cta ; + c2c ,;+ ca (23)

The performance measure seen in Eq. (21) is based on the angular separations

between spacecraft, which are determined by the orbital elements in Eq. (20). For

the rotating formation, the orbital elements are simple functions of a, n, 5_o,, and 5t=t.

However, the angular separation between spacecraft does not change with semimajor

axis. Therefore, the functional expression for a O is

aij = f(n, 5ton, 5t,_t) (24)

The parabolic instantaneous weight function, w,_, can be uniquely defined by three

constants cl, c2, and c3. The result is that the performance problem has six design

variables such that

W,_ = f(n,&_,&,t, ct,c2, ca) (25)

The dimensions at_ and 51,t can be written in terms of inclination and eccentricity

therefore, aij can be expressed in terms of n, e, and i. A solution for a_3 in terms of

n, e, and i allows a solution for Wa of the form

W_ = f(n, e, i, cl, c2, ca) (26)

An expression for aij can be obtained using the definition of the cross product:

IIri x rj[l= fir3 sin a 0 (27)

For close formations oQj is small so we can assume

sin c_,; _ ai; (28)

Solving for Oeij we obtain the expression

% _ II r, × rj tl (29)
r _ r 3

The vector r, in the perifocal system can be expressed as

a(1 - e 2) ]rr_- i+e-cos_,, [ cosu, sint.,, 0 (3o)

i0



whero u, aml uj are givml bv Eq. (20). Ttw vector rj can b,, written _lsin_ a similar

expressic>n by replacing tlw subscript i in E(I. (3()) with 3.

T,) )tse Eq. (29) the vectors must be rotate(I into a (.,)mmon r('['('rel).c(' frame _tsing

the appr()priate rotation matrix. The rotat.ion mat.rix t(> go from the perifo(-a[ system

to )vn is constructed for the i th position vector using

R(P= Ra(-_,)R_(-_)Ra(-co) (31)

where D, is given in the orbital element set in Eq. (20). Then the inertial represen-

tations of r, and rj can be written using

"" tPr (32)r,_ = a_Prip r_ = rt+ jp

Using the preceding, we have the information required to evaluate a,j from Eq. (29).

The expression, which is not shown here, is a non-trivial transcendental function of

the form

oqj = f(n,e,i) (33)

We now make some assumptions to arrive at a simpler form for W_.

Simplifying Assumptions

In general, solving W_, requires integrating the motion over an orbit. However,

for special configurations of the rotating formation, the relative spacing between the

spacecraft is nearly constant over an orbit. This is true for near circular rotating
formations when

_l_ _ _u,t (34)

The relative positions are also nearly constant over an orbit for formations com-

posed of a large number of spacecraft. In Figure 5, a rotating formation of four

spacecraft is shown. The shaded circles represent the positions of four spacecraft at

the initial epoch. The white circles represent the positions of the spacecraft after

a small passage of time, At. The relative positions, and hence the angular separa-

tions, have changed after the time _t. However, when the spacecraft at position 1

reaches position 2 the relative positions of the spacecraft will be nearly the same as

at the initial epoch. The relative positions are not exactly the same because all of the

spacecraft in formation are at different points in elliptical orbits. For example, for

this configuration spacecraft 2 is at periapsis and spacecraft 1 is at a true anomaly

given by Eq. (20) with i = 4. Therefore, the time for spacecraft 1 to reach position 2

is slightly different from the amount of time for spacecraft 2 to reach position 3. For a

four-spacecraft formation the relative positions are nearly the same after a passage of

time T/4. In general, for a formation of n spacecraft, the relative positions are nearly

it
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Figure 5: Rotating Formation of Four Spacecraft
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Figure 6: Integrand vs. Time for a Highly Elliptical Formation

equivalent after time Tin. Therefore, the period of the formation decreases with n.

More importantly though, as n increases the amplitude of the integrand in Eq. (21)

goes to zero. This is demonstrated in Figure 6. A plot of the integrand over an orbit

period for n = 4, 6, 10 is shown for a highly elliptical formation with dz_ = 6000 m

and d_,t = 1000 m. As n increases the period and amplitude of the motion decrease.

Hence, the relative positions of the spacecraft are nearly constant for large n.

If the relative motion of a formation is nearly constant over an orbit the integral

can be neglected in

w(a,j) dt (35)
Wo= o

12
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With Eqs. (23), (29), and (36) the tools are available to express I,V_ analytically.

We are interested in the dimensions of the rotating formation that result in optimum

performance. Recall that the shape of the rotating formation is determined by e and

i. The analytic expression of W_ is a non-trivial function in terms of six variables.

A simplification of the expression is necessary to solve for optimum configurations in

terms of e and i. Recall that I,V_ is not dependent on a. Therefore, the analysis can

be continued without concern for the specific value of semimajor axis.

To obtain an expression for W_, we need to evaluate the summation in Eq. (36)

for a given n. A value of n = 4 is chosen to demonstrate the techniques used to obtain

the optimum. Results for several values of n are presented later to determine trends

in the optimum solutions for changing n.

Assuming n = 4 in Eqs. (23), (29), and (36), bt"_ can be expressed in terms of e, i,

cl, c2, and c3. The results can be expanded to third-order in small e and i about e = 0

and i = 0 to obtain an approximate expression. However, the resulting expression

has a singularity at e = 0. Plotting the exact expression for W_ in negative i and e,

as shown in Figure 7, lends some understanding: there is a cusp at e = 0 and i = 0.

o_
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Figure 7: The Singularity in Eccentricity
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Thr singularity in ,' c&n bo avoi_locl bv expanding about, another point. To ch_ so

wt' make a sllbstitution ILsing
i

e = + e) (:3rl

where 0 < e << 1 is a small dimensionless parameter. Expanding the resulting

expression to third-order in i and e yields an approximate expression for W_:

_ (11c2 13c2 ) ia ---g---- --'7--- 7-'-_o+o+oV z+Scti2e 8cti2 c2e2i (V/2C2+C2)ei+2V_c3+2c23 3\ 18 + +ca
(38)

To solve for the e and i which results in an optimum solution, we must solve the set

of simultaneous equations

Oi -0 Oe -0 (39)

for e and i. However, expressions for OW, JOi and OW, JOe in terms of e must be

found. Differentiating Eq. (38) with respect to i yields

OWa _ 64c1(1 + e)i + c2(8(1 + v_) + 4(1 + v_)e + V/-2e2 - (22 + 13v/-2)i 2 (40)
Oi 12

To obtain an expression in terms of e a substitution using

=2 e--1

is performed to obtain

OW_ 128clei _ + c_(4v% _ + 4(2 + v_)ei + i=(4 + 5v_- (22 + 13V_)i=))

(41)

(42)
Oi 12i 2

Taking the partial derivative of W_ with respect to e yields

OlJ,_ i2 (c2(2 + 2v_ + V/'2e) + 16cli)
(43)

0e 12

To determine an expression in terms of e a multiplication by Oe/Oe is performed where

-_e = 2/i (44)

The derivative with respect to e is

0W_ 0W_ 0e

0e 0e 0e 12
(45)

Solving Eqs. (42) and (45) simultaneously yields expressions for e and i that yield an

optimum in I_. The expressions are complex and not shown here. However, there

is a relation between the optimum e and i such that

eom = iota�2 (46)

14



lq.eca.ll that, we asslmw n = 4 in or_h,r to obtain an expIMt expression for II_.

Therefl)re, E_I. (46) appears to be oh,penitent on the asslmlption that tlw forma-

tion is composed of four spacecraft. However. the same res_llr, is obcaine_l rising

,, = 2,3,4,3.6,8, l.O.

Equation (46) has several interesting physical implications. Substituting the re-

lations for e and i from Eq. (20) into Eq. (46) yields alo, = 6l_t. Hence, the ideal

rotating formation according to W_ is circular.

By substituting e = i/2 into Eq. (36) an expression is obtained for W_ in terms of

n, i, cl, c2, and ca. Recall that the only assumptions made to arrive at Eq. (36) are

small angles and that the integrand in Eq. (35) is constant in time. To simplify I,I,'_,

we expand in a power series to second-order in i and investigate a larger formation

with n = 8. A second order expansion in i for n = 8 yields

W_ 7 + c2 + _ + i + ca (47)7 v_

To provide a more intuitive understanding of the results, a new form for the parabolic

weight function of Eq. (23) is introduced:

_(_,j) = Z(_,, _ _)(_,j _ _,) (48)
_s

where c_,, and a_ are the upper and lower limits on angular separation respectively

and a, is a normalization factor. The constants c_, c2, and ca from Eq. (23) can be

written in terms of a,,, c_,, and c_, using

cl = l/a, (49)

c_ = -(_ + _)/_ (5o)
c3 = OL_al/_, (51)

For circular formations, the radius of the formation is simply the inclination of

the orbits composing the formation. Therefore, solving for the optimum radius, ro,

from Eq. (47) and substituting for cl, c2, and ca using Eqs. (49-51) we obtain

(,_o= _ + -i-g + F_ -v_

A new angle, c_,_, is defined such that

+ (_, + o_,,) (52)

Olu -F O_l
_,_ - (53)

2

This angle is the ideal separation angle according to the instantaneous weight function

w_. The optimum radius, to, can be rewritten in terms of a_:

,-,,= _+_-+_ 2-_+ ,.,. (54)
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Th. _a.elwr,r_'hni<liLrS_'an}.'a4>t>h'dr.o_ml r,lw opthn,zm ta_liilsIi>t'<litfrn,nrvalues

_>I ,_. The wsid_s fl>t _LiH'm'.nr v_dlws of ,. al'O

t

n = 2 ro = _____,_ (55)

rz=4 r o : _

'(Jn = 5 ro = -_ 5+2 am (58)

1 +  )am (59)n=6 ro =-_

n=8 ro --_ I÷Vz2H - -V_+ a._ (60)

n=lO ro = 1-6 l+v_+ 2

n=12 ro =-i2

There are several interesting trends seen in the equations for ro using different values

of n. The equations are functions only of am. Therefore, the optimum configuration

for a given n depends only on the ideal separation angle according to the instanta-

neous weight function wo. The shape of the parabola does not affect the results.

Furthermore, with the exception of n = 3, the optimum radii solutions are linear

functions of am.

The relation between ro and n is not immediately obvious. However, upon close

inspection we can determine a more general form of ro for several values of n. For

n = 2, 4, 6 ro can be expressed as

ro = - + am (63)--5-

A plot of the optimum radius over a range of n values is seen in Figure 8. The

points are the analytic solutions according to Eqs. (55-6.9) for am = 0.000375 rad.

The curve is a plot of the empirical solution in Eq. (63). The points for n = 9 4, 6

fall exactly on the curve. This result is expected because the empirical function is

derived from the equations of ro for n = 2, 4, 6. The values of ro for n = 3,5 are in

good agreement with the empirical solution. However. for n > 8 the accuracy of the

empirical function degrades. The empirical function predicts a downward trend in ro

for n > 8. However, the analytic solution appears to approach a limiting value.

The limit of ro as n approaches infinity can be determined using simple geometric

relations. For n --+ :x:, wp(aij) is the same for all i where t # j. Therefore, we only

16
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Figure 8: Optimum Radius for the Rotating Formation

need to evaluate wp(ei]) for an arbitrary i. Thus for n --+ oc

_'Voo lim 1'_-1 k 1 ]_
= -- _ wp(az]) = lim - wp(a])

n--*oo T]s i=1 j=n+l n--*oo rl, 1 .=

(64)

Figure 9 shows two arbitrary radius vectors, rl and r2, defining two spacecraft posi-

tions in a circular formation. Angle r/ is the angular radius of the formation. The

angle around the circle between rl and r2 is denoted 0. Using these definitions Eq. (64)

can be written as

l,r¢. = lim 1 kwp(c_])= 1 f02'__-_o_ n - 1 _ wp(a)dO (65)
j=2

From inspection of Figure 9 we can write

rt = [sinrl 0 cos rf] T

r2 = [sin r/cos 0 sin r/sin 0 cos r f] T

Recall that HT_ is not dependent on the semimajor axis.

vector representations of the spacecraft positions without loss of generality.

rt = r2 = 1, a can be expressed as

(66)

(67)

Therefore. we use unit

Using

=11 × r2 tl (68)

for small c_. Substituting Eqs. (66-67) into Eq. (68) we obtain

ce = Isin2 r/ (-2cos2r/ (-l + cosO) + sin2 r/sin2 0) (69)

17
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Figure 9: Circular Formation Geometry for n -- c_

Substituting Eqs. (69) and (53) into Eq. (48) the integral in Eq. (65) can be evaluated:

1
(-7zr - 16zrala_, + 37r cos 4rl + 8am(k2 - kl))

161ra_

+ 16ra----_

where kt and k2 are given by

To solve for the optimum radius as n _ oo we need to solve

-0
Or I

(70)

(71)

(72)

(73)

However, the resulting derivative is a transcendental function in terms of am and

r� and cannot be explicitly solved for the optimum radius. Therefore, Eq. (70) is

expanded in small r� to second order:

1 ( 4amr/ )
OLs 7f

(74)

Defining r_ as the optimum radius as n _ oc and solving Eq. (74) for r_ obtains

2
r:¢ = -a_ (75)

,'T
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Like ro for small n, r_¢ is only a function of _m. Therefore, the shape of the

parabolic instantaneous weight function does not affect the optimum solution for

large n. In Figure 10, the solution of ro for a range of n values is plotted with the

asymptote r=. The approximation for the asymptote is in good agreement with the

analytic solution for ro for large n.

Recall that several simplifying assumptions are made to obtain an analytic solution

for W_ and the limiting value as n --+ oc. We need to determine if the simplifications

yield solutions that are in good agreement with the exact solutions. Plots of W_ for

n = 3,4,8, and 12 are shown in Figures 11-12 for a range of_m. The data points are

the exact numerical solutions for different radii obtained using a Runge-Kutta fourth

order integrator to solve Eq.(21). The curves are the approximate analytic solutions

for W_. The approximate solutions are in excellent agreement with the exact solution

for low _m. For high era, on the order of _,_ = 0.25, accuracy of the approximate

solution for W_ is poor. A decrease in accuracy is expected for high _,_ because the

small angle approximation was used in the development of the approximate solution.

However, the optimum in performance occurs at nearly the same point according to

both the exact and approximate solutions even for o_m = 0.25. In Figure 13, plots

of the exact vs. approximate optima are shown for a range of _.,. The approximate

solutions are accurate even for large o_,,_ on the order of _m = 0.5. In the range

of 0.5 < v_,_ < 1 the accuracy of the approximate solution degrades. However, the

approximate results are still useful in this range. We suggest that for 0.5 < _,_ < 1

the approximate solutions be used as an initial guess to solve for the exact optimum

using numerical techniques.
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CONCLUSIONS

[n this paper an algorithm is (leveloped to place n satellites ectually space(l in

thne aroun(l _tn ellipse in the relative reference frame in terms of the cl_tssi¢'_tl orbital

elements. The dimensions of the ellipse-like path are shown to be simple functions of

orbit eccentricity and inclination. The performance of the formation is investigated

using a performance metric based on the orbit averaged sum of the angular sepa-

rations between spacecraft. The exact expression is a non-trivial function of orbit

eccentricity, inclination, the number of spacecraft, and the constants that define the

instantaneous weight function. However, several simplifying assumptions allow for an

analytic approximation. Using the resulting approximate equation for tT,_, optimal

configurations are found for different values of n. We show that, according to the angu-

lar performance measure, the optimal rotating formation is circular. The optimal radii

for different values of n are found to be simple functions of am, the ideal separation

angle according to the instantaneous weight function. Interestingly, the optimal con-

figuration does not depend on the shape of the parabola chosen for the instantaneous

separation metric. For n < 8, the optimal radius is ro = ((n - 2)/2 + V_/2)am/n,

whereas for large n (> 8), the asymptotic limit ro _ 2am/Tr is quite accurate.
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NOTATION

a

CI, C2, C3

d

e

FR

i

_s

F_

Fo

semimajor axis, m

constants defining parabolic weight

spatial separation between two spacecraft, m

orbit eccentricity

inertial reference frame

relative reference frame

rotating reference frame

perifocal reference frame

orbit inclination, rad

true longitude at epoch, rad

number of spacecraft in formation

number of distinct angles in a formation

optimum radius as n --+ _. rad

optimum radius for rotating formation, ratct

'21



T

t_

ts

W_

Wa

_m

_s

_u

_lat

V

f_

W

orbital perio(t, ,_

[)t()v;tgat:it)t). t;htt(, ft)t .,+]+sp+u'(,t:r;.tf_, s

_'(l,t_t[ P.ittIO ..;epar;it, i()tt for n. s[)+ti'ecraft, S

or[)i_ perform_In(:e [Ii_'_ÀSltr(.+

approximate expression for _I<'_

instantaneous position metric

angle between the ++h and jth satellites, rad

lower limit on angular separation, rad

ideal angular separation, rad

scaling factor, rad

upper limit on angular separation, rad

formation longitudinal separation, tad

formation latitudinal separation,rad

orbit mean motion, rad/s

true anomaly, rad

longitude of ascending node, rad

argument of periapsis, rad
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